

Quadrate im Quadrat

- 1. Einleitung
- 2. Lösungsmenge
- 3. Quadratische Paare
- 4. Geometrische Lösungen
- A1 Anhang Numerische Rechnungen
- A2 Anhang Literatur

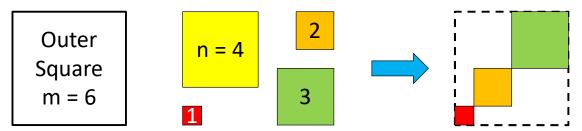
Autor:

Michael Bischoff, Parkstr. 49, D-89250 Senden

1. - Einleitung

Unter der **Quadratur des Quadrates** (Lit. 1) versteht man die lückenlose und überlappungsfreie Bedeckung ("Parkettierung") eines gegebenen Quadrates. Stuart Anderson (Lit 2) und Martin Gardner (Lit 3) stellen diverse Formen der mehr oder weniger perfekten Parkettierung vor.

Das füllen eines großen Quadrates der Kantenlänge m mit diversen kleineren Quadraten der Kantenlänge 1 bis n soll möglichst lückenlos erreicht werden.



Also gilt für die Flächen

$$m^2 < \sum n^2 < 1 + 2^2 + 3^2 + ... + n^2$$
 (1.1)

Im obigen Beispiel mit m = 6 beträgt die gesamte Fläche also 36 Einheiten. Die einzelnen Quadrate der Längen n von 1 bis 4 ergeben eine Fläche von 30 FE. Also bleiben rechnerisch 6 Flächeneinheiten frei, das Quadrat lässt sich nicht perfekt belegen.

Zudem merkt man an diesem Beispiel schnell, das eine rechnerische Lösung geometrisch nicht unbedingt machbar sein muss – hier verhindert das kleine 4-er Quadrat ein anlegen des 3-er Quadrates.

Das erste theoretisch perfekte Quadrat ergibt sich für m=70 und n=1 bis 24

$$m^2 = 70^2 = 4900 = \sum n^2 < 1 + 2^2 + 3^2 + \dots + 24^2 = 4900$$
 (1.2)

Es bleibt kein Rest, rechnerisch geht es perfekt auf.

Leider lassen sich die Quadrate der Länge n=1 bis 24 nicht in das große Quadrat anlegen da die Geometrie dies nicht zulässt (siehe obiges Beispiel). Die bisher beste Lösung muss auf ein kleines n=7-er Quadrat verzichten womit dann 49 Flächeneinheiten von insgesamt 4900 FE frei bleiben ($1\,\%$).

Im Wertebereich bis m = 2.337.238 gibt es keine weiteren theoretisch perfekten Füllungen eines großen Quadrates durch kleinere Quadrate n = 1 bis 25.400.

2. - Lösungsmenge

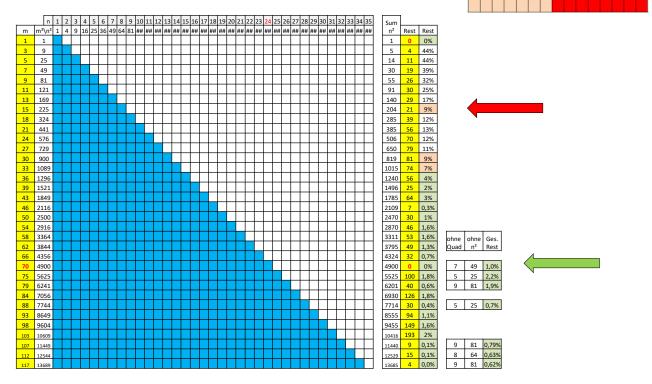
Die Beziehungsgleichung (1.1) zwischen dem großen Quadrat m_i und den kleinen Quadraten n_i kann wie folgt um den Rest verallgemeinert werden.

$$m_i^2 = \sum_{i=1}^{i=k} n_i^2 = 1 + 2^2 + 3^2 + ... + n_i^2 + Rest_i$$
 (2.1)

Mann kann diese Beziehung in zwei Versionen analysieren:

- 1. Bestimme das passende große Quadrat m_i aus den gegebenen kleinen Quadraten bis n_i bei einem sich ergebenden Rest $_i$ also $m_i = f(n_i)$
- 2. Bestimme das maximale kleine Quadrat n_i aus dem gegebenen großen Quadrat m_i und dem zugehörigen Rest $_i$ oder $n_i = f(m_i)$

Die Tabelle zeigt für unterschiedliche n_i die dazu passenden m_i . Bei einem m=15 sind die kleinen Quadrate bis n=8 möglich bei einem verbleibenden Rest von 21 Flächeneinheiten (weiße Quadrate). Dies entspricht einer fehlenden Fläche von 9%.



Fehlende Flächen von unter einem Prozent stellen gute Füllgrade dar.

Quadrate im Quadrat

2. - Lösungsmenge

Die andere Funktion $n_i = f(m_i)$ kann wie folgt dargestellt werden (siehe Anh.1)

Diese Berechnung ist etwas weniger aufwendig da zu einem n_i nur das passende m_i bestimmt werden muss, zudem natürlich die Berechnung des Restwertes.

Die Analyse ergibt keine weitere perfekte Quadratur im Quadrat wie sie bei n_i=24 und $m_i = 70$ vorliegt mit Rest = 0

Interessanterweise gibt es aber Paare von Quadraten (z.B. bei $n_i = 47/48$) und den dazu passenden großen Quadraten bei m_i = 189/195 die in regelmäßiger Abfolge immer wieder mal sehr kleine Restwerte ergeben (ein Restwert von 400 bei einem $m_i = 1.536.060$ bedeutet 1,6 x 10^{-10}), ein wirklich kleiner Restwert.

Damit ergeben sich folgende Fragen:

- Warum gibt es diese Doppelpaare? 1.
- 2. Sind diese regelmäßig bis unendlich?
- 3. Kann man die Werte m, bestimmen?
- Kann man die Werte n_i bestimmen? 4.
- Wie ergeben sich die Restwerte Rest_i? 5.

Im Zahlenbereich bis $n_i = 25.000$, also der Fläche von 5.208.645.837.500 Einheiten, (dies wäre ein m; von 2.282.246) wurde diese Funktionalität überprüft und als rechnerisch richtig bewertet.

Die geometrische Positionierung der Quadrate muss auf anderem Wege (manuell oder per PC) realisiert werden.

- 11	111	itest
15	36	56
16	39	25
17	43	64
18	46	7
19	50	30
20	54	46
21	58	53
22	62	49
23	66	32
24	70	0
25	75	100

178

289

	46	184	345
	47	189	1
1	48	195	1
1.	49	202	379
	50	208	339
1.	49	202	

45

189

	429	5.140	9.645
	430	5.158	10.109
	431	5.175	9
	432	5.193	9
3.	433	5.212	10.215
	434	5.230	9.815

	766	12.253	24.138
	767	12.276	16
	768	12.300	16
4.	769	12.325	24.280
	770	12.349	23.556

12.229

23.326

765

	1.197	23.926	46.081
	1.198	23.956	47.337
	1.199	23.985	25
	1.200	24.015	25
5.	1.201	24.046	47.515
	1.202	24.076	46.371

	19.197	1.535.701	3.043.006
	19.198	1.535.821	3.062.442
	19.199	1.535.940	400
20	19.200	1.536.060	400
20.	19.201	1.536.181	3.063.160
	19.202	1.536.301	3.044.196

3. - Quadratische Paare

Die quadratischen Paare ergeben sich aus folgender tabellarischer Übersicht. Dabei ist mit k=1 das erste Paar bei n=47/48 mit dem dazu gehörenden Quadraten m=189/195 bei einem Rest von 1 gemeint.

k	n-1	n	m-1	m	Rest	delta m
1	47	48	189	195	1	6
2	191	192	1.530	1.542	4	12
3	431	432	5.175	5.193	9	18
4	767	768	12.276	12.300	16	24
5	1.199	1.200	23.985	24.015	25	30
6	1.727	1.728	41.454	41.490	36	36
7	2.351	2.352	65.835	65.877	49	42
8	3.071	3.072	98.280	98.328	64	48
9	3.887	3.888	139.941	139.995	81	54
10	4.799	4.800	191.970	192.030	100	60
11	5.807	5.808	255.519	255.585	121	66
12	6.911	6.912	331.740	331.812	144	72
13	8.111	8.112	421.785	421.863	169	78
14	9.407	9.408	526.806	526.890	196	84
15	10.799	10.800	647.955	648.045	225	90
16	12.287	12.288	786.384	786.480	256	96
17	13.871	13.872	943.245	943.347	289	102
18	15.551	15.552	1.119.690	1.119.798	324	108
19	17.327	17.328	1.316.871	1.316.985	361	114
20	19.199	19.200	1.535.940	1.536.060	400	120
21	21.167	21.168	1.778.049	1.778.175	441	126
22	23.231	23.232	2.044.350	2.044.482	484	132
23	25.391	25.392	2.335.995	2.336.133	529	138

Schon auf den ersten Blick erkennt man irritierende Eigenschaften der einzelnen Parameter.

1. Der fehlende Rest ist offensichtlich jeweils die Quadratzahl des Index k

$$Rest_k = k^2 \tag{3.1}$$

2. Die großen Quadrate m-1 bzw. m sind im Abstand delta m von 6 k

$$delta m_k = 6 k \tag{3.2}$$

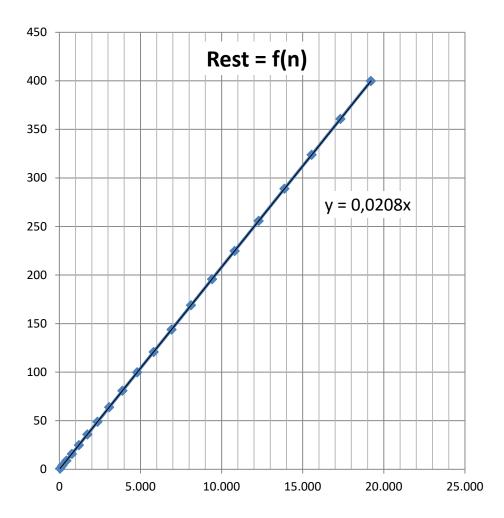
$$m_k - 1 = m_k - delta m_k \tag{3.3}$$

3: Definitionsgemäß ergeben sich die kleinen Quadrate bei

$$n_k \text{ und } n_k - 1$$
 (3.4)

3. - Quadratische Paare

Beachtet man die graphische Darstellung der Restmenge als Funktion von n so erkennt man einen linearen Zusammenhang



Mit der Proportionalitätskonstante 0.0208333 = 1 / 48 erhält man einen irritierend einfachen Zusammenhang der beiden Größen.

$$Rest_k = 1/48 n_k$$

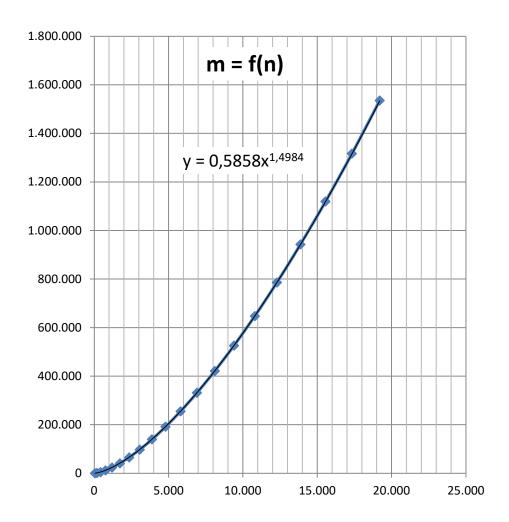
Mit dem bereits bekannten Zusammenhang (3.1) für den Rest_k folgt damit

4. Eine Beziehung für die kleinen Quadrate n_k wie folgt

$$n_k = 48 k^2$$
 (3.5)

3. - Quadratische Paare

Eine ähnliche grafische Darstellung der Kantenlänge der großen Quadrate m als Funktion der kleinen einbeschriebenen Quadrate ergibt



Man erkennt einen potenziellen Anstieg der Funktion m = f(n)

5. Die großen Quadrate der Kantenlänge m_k ergeben sich wie folgt

$$m_k = 4 k n_k + 3 k$$
 (3.6a)

einsetzen von n_k gem. (3.5)

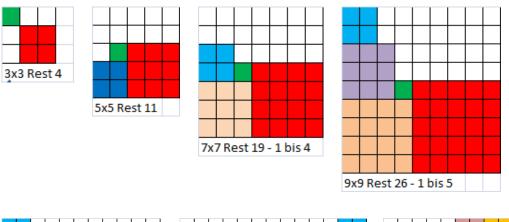
$$m_k = 4 k 48 k^2 + 3 k$$

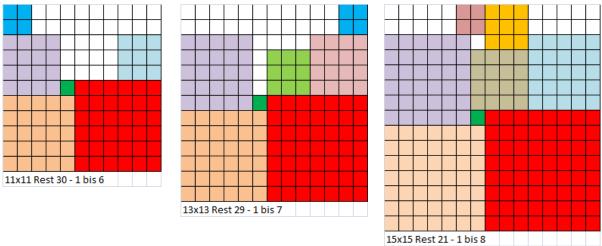
$$m_k = 192 k^3 + 3 k = 3 k (1 + 64 k^2)$$
 (3.6b)

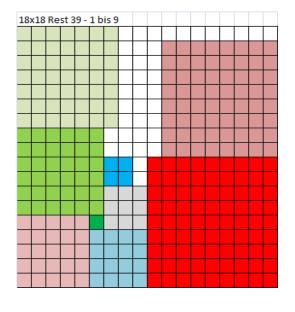
Nun ergibt sich nur noch eine Frage:

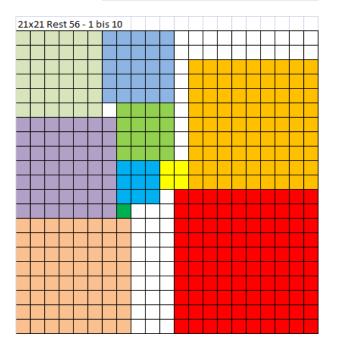
Warum ergeben sich Paare von extrem guten Restwerten bei Vielfachen von 48 aus derart einfachen Zusammenhängen?

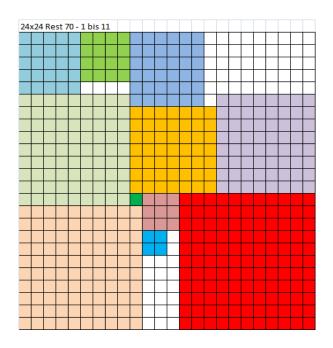
Die folgenden Darstellungen zeigen die Lösungen der Quadrate im Quadrat an.

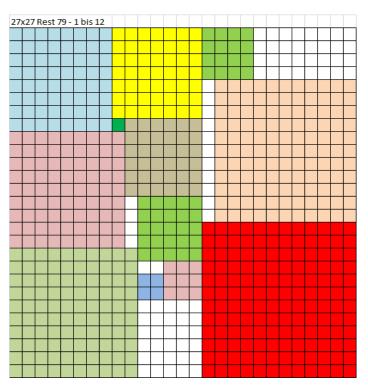


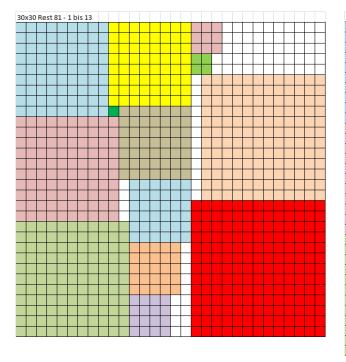


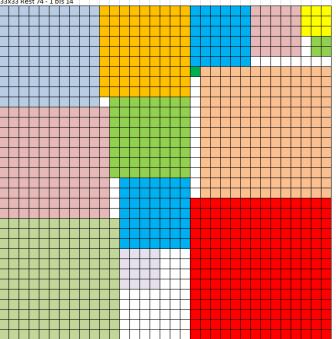


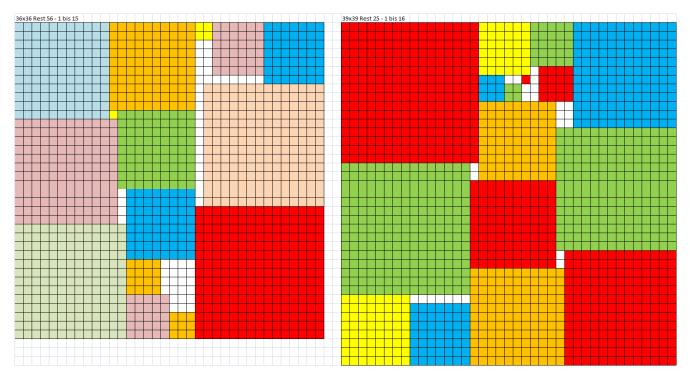


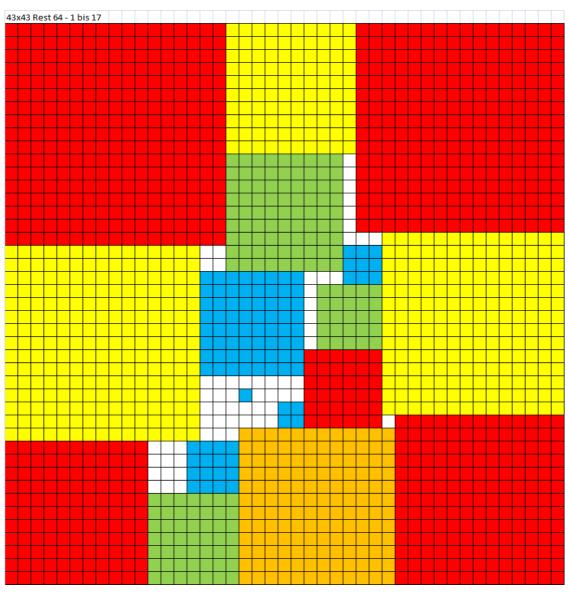


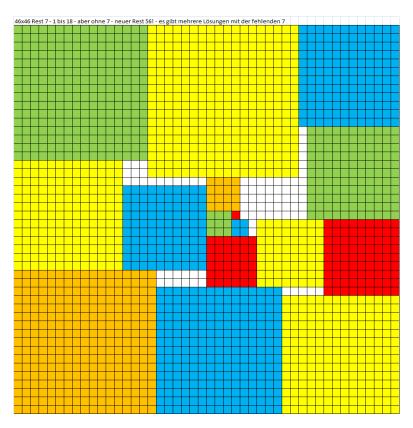


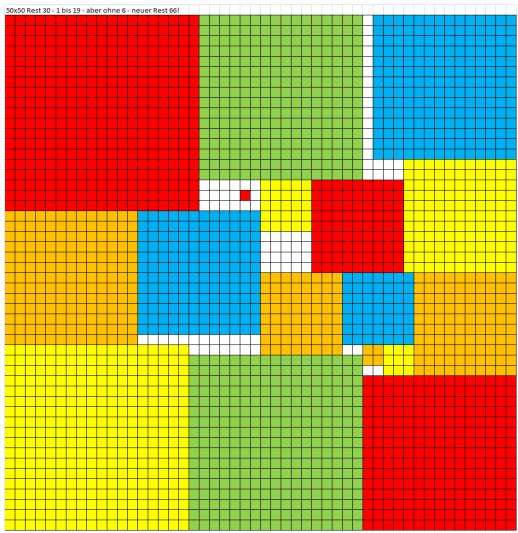


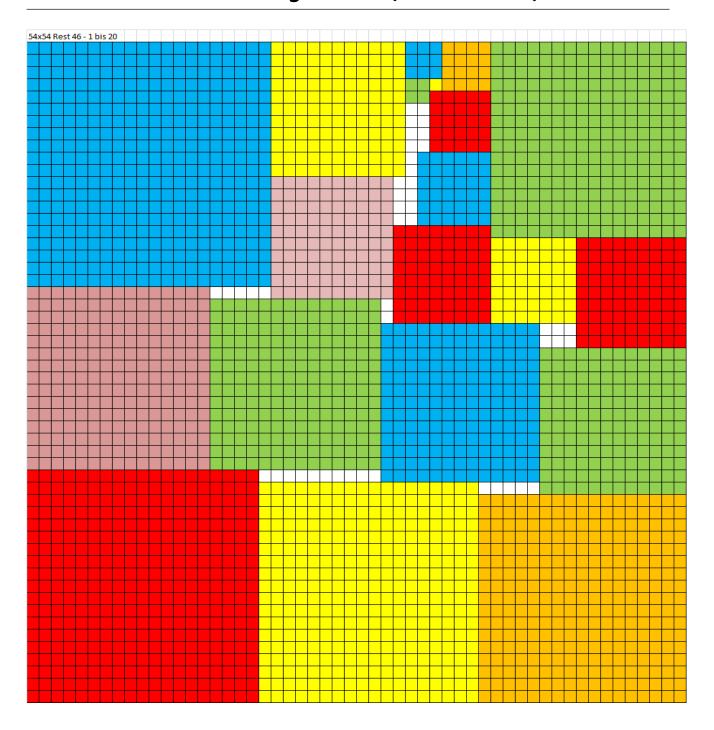




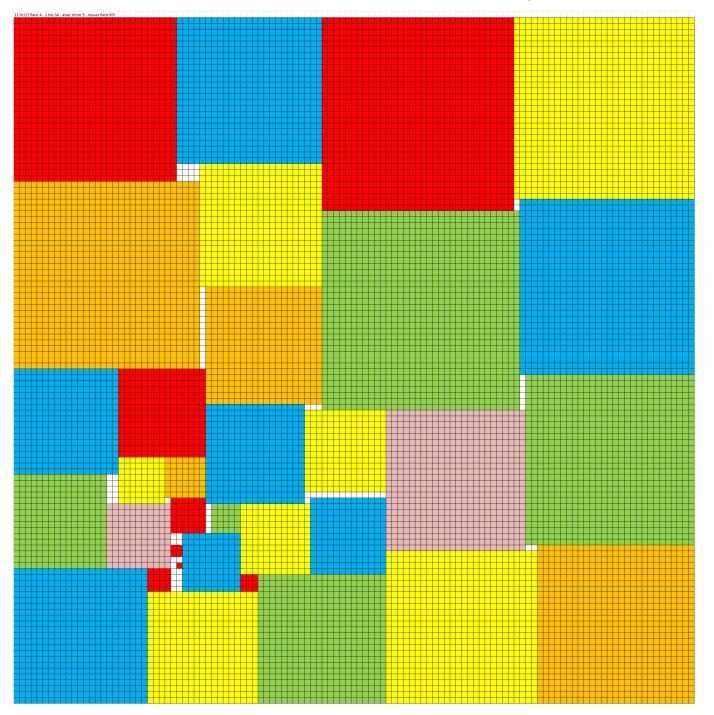








117x117 Rest 4 - 1 bis 34 - aber ohne 9 - neuer Rest 85! entspricht 0,62%



Anhang - Numerische Rechnungen

Die Berechnung gem. (2.1) ist sehr einfach

m_i = Laufvariable des großen außen liegenden Quadrates

 n_i = laufvariable der kleinen innen liegenden Quadrate

Bei gegebenen n_i ergibt sich das dazu passende m_i analog aus (2.1) n_i = Laufvariable der kleinen innen zu platzierenden Quadrate

Berechnen der Summe 1 bis n²

Die Wurzel aus der Summe ergibt den Startwert für m_i Den Startwert für m_i aufrunden zum endgültigem m_i

Der Rest ergibt sich aus der Differenz der Summe und m_i^2

n	Sum (1-n²)
1	1
2	5
3	14
4	30
5	55
6	91
7	140
8	204

	aufgerundetes	min.
Wurzel Sum	m	Rest
1		0
2,23606798	3	4
3,74165739	4	2
5,47722558	6	6
7,41619849	8	9
9,53939201	10	9
11,8321596	12	4
14,2828569	15	21

Anhang – Literaturübersicht

	Literatur	Hinweise
[1]	https://de.wikipedia.org/wiki/Quadratur_des_Quadrates	
[2]	Stuart Anderson: <u>Squared Squares</u> , 2014. (englisch) http://www.squaring.net/sq/ss/ss.html	Ausführliche Übersicht mit historischen Informationen
[3]	Martin Gardner, Mathematischer Karneval, Okt. 1977, Ullstein GmbH – Original bei Alfred A. Knopf Inc. – New York	
[4]		